

Reg.	No.	:	**	**	 . 11 11	**	**	**	 **	 	 **	**	**	
Name	9:				 									

I Semester M.Sc. Degree (C.B.S.S. – Reg./Supple./Imp.)
Examination, October 2021
(2018 Admission Onwards)
MATHEMATICS
MAT1C03: Real Analysis

Time: 3 Hours

Max. Marks: 80

PART - A

Answer any four questions from this Part. Each question carries 4 marks :

- 1. Let A be the set of all sequences whose elements are the digits 0 and 1. Show that A is countable.
- 2. If f is monotonically increasing on (a, b), show that f(x) exists and $f(x-) \le f(x)$ for every $x \in (a, b)$.
- 3. Let $f(x) = x^{10} \sin \frac{1}{x}$ if $x \ne 0$ and f(0) = 0. Is f differentiable at all points? If so, find f'(x) for all x.
- 4. If f is continuous on [a, b], show that $f \in R(\alpha)$ on [a, b].
- 5. State and prove the integration by parts theorem.
- 6. Is the curve $f(t) = e^{2\pi it}$, $t \in [0, 2]$ rectifiable? Justify. If rectifiable, find its arc length.

PART - B

Answer any four questions from this Part without omitting any Unit. Each question carries 16 marks:

Unit - I

- 7. a) Suppose X is a metric space and let K⊂Y⊂X. Show that K is compact relative to X if and only if K is compact relative to Y.
 - b) Construct the Cantor set and show that it is perfect.
 - c) If f is a continuous mapping of a metric space X into a metric space Y and if E is a connected subset of X, show that f(E) is connected.

P.T.O.

- 8. a) Show that every K-cell is compact.
 - b) Show that a mapping f of a metric space X into a metric space Y is continuous if and only if $f^{-1}(V)$ is open in X for any open set V in Y.
- 9. a) Prove that a subset E of the real line R is connected if and only if it has the following property: if $x \in E$, $y \in E$ and x < z < y, then $z \in E$.
 - b) Let f be a continuous mapping of a compact metric space X into a metric space Y. Show that f is uniformly continuous on X.

- 10. a) State and prove L'Hospital's Rule.
 - b) Assume α increases monotonically and $\alpha' \in R$ on [a, b]. Let f be a bounded real function on [a, b]. Show that, $f \in R(\alpha)$ if and only if $f\alpha' \in R$ and in that case, $\int_{0}^{\infty} f d\alpha = \int_{0}^{\infty} f(x)\alpha'(x)dx.$
- 11. a) Suppose $f \in R(\alpha)$ on [a, b] and let $m \le f \le M$. A function ϕ is continuous on [m, M] and $h(x) = \phi(f(x))$ on [a, b]. Show that $h \in R(\alpha)$ on [a, b].
 - b) Suppose f is bounded on [a, b]. If f has only finitely many points of discontinuity on [a, b] and if α is continuous at any point at which f is continuous, show that $f \in R(\alpha)$.
 - c) Suppose $f:[a,b] \to \mathbb{R}^k$ is continuous and f is differentiable in (a,b). Show that there exists $x \in (a, b)$ such that $|f(b) - f(a)| \le (b - a) |f'(x)|$.
- 12. a) State and prove change of variable rule in Riemann-Stieltjes integration.
 - b) State and prove the generalized mean value theorem and deduce the mean value theorem.
 - c) Let f and α be functions on $\left[0, \frac{\pi}{2}\right]$ defined as $f(x) = \cos x$, $\alpha(x) = \sin x$.

Is
$$f \in R(\alpha)$$
? Justify. If $f \in R(\alpha)$ evaluate $\int_{0}^{\frac{\pi}{2}} f d\alpha$.

- 13. a) Let $f \in R$ on [a, b]. For $a \le x \le b$, let $F(x) = \int f(t) dt$. Show that F is continuous on [a, b]. Furthermore, if f is continuous at a point x₀ of [a, b], then show that F is differentiable at x_0 and $F'(x_0) = f(x_0)$.
 - b) Let f be of bounded variation on [a, b]. Let $V(x) = V_f(a, x)$ if $a < x \le b$ and V(a) = 0. Show that every point of continuity of f is also a point of continuity of V. Prove the converse also.
 - c) Let $f:[a, b] \to \mathbb{R}$ satisfies $|f(x) f(y)| \le K|x y|$ for all $x, y \in [a, b]$ and K > 0. Is f of bounded variation? Justify.
- 14. a) If $f : [a, b] \to \mathbb{R}^k$ and if $f \in R(\alpha)$ for some monotonically increasing α on [a, b], show that $|f| \in R(\alpha)$ and $\int_{\alpha}^{b} f d\alpha \le \int_{\alpha}^{b} |f| d\alpha$.
 - b) State and prove additive property of arc length.
 - c) If f is monotone increasing on [a, b], evaluate the total variation of f on [a, b].
- 15. a) State and prove fundamental theorem of calculus.
 - b) Let $f:[a, b] \to \mathbb{R}^n$ be a rectifiable path. If $x \in (a, b]$, let $s(x) = {}^{\wedge}_f(a, x)$ and let s(a) = 0. Show that the following holds:
 - i) The function s is increasing and continuous on [a, b].
 - ii) If there is no subinterval of [a, b] on which f is constant, then s is strictly increasing on [a, b].
 - c) Is the function $f(x) = x \sin \frac{\pi}{x}$ if $x \neq 0$ and f(0) = 0 is of bounded variation on [0, 1]? Justify.

